Rapid Rolling Window Regressions
via Home Made Sum of Squares and
Cross Products

Mark Keintz
Wharton Research Data Services
PhilaSUG
March 19, 2019

The Object: Efficient Rolling Window
Regressions

Explore Patterns and Relationships that vary
over time

Generate model for every rolling window of a
given size (vs. a single model for entire span)

The data set size becomes large quickly
At WRDS: 29,435 firms averaging 2,810 dates
10 Billion rows for 120 day rolling windows

The Object: Efficient Rolling Window
Regressions

e Take Home Points

— Save disk space — use data set VIEWS

— Read each record once, but write it multiple times
(holding and writing)

— Consider “type=SSCP” data sets (fixed size
regardless of the size of the window)

Brute Force Approach
Make Windows Data Set, run PROC REG

 For a data set of 900 records and window size 90,
output 72,990 records (=811%90)

— Window 1: Records 1 through 90
— Window 2: Records 2 through 91

— Window 811: Records 811 through 900
(Question: How to order the repeated output data)

e Run PROC REG for each Window

PROC REG data=...;
by window;

Brute Force, Simple Program

DATA rwin / view=rwin;
ws = 90;
nwin = nrecs - ws +1;
do w=1 to nwin;

do p=w to w+ws-1;
set myseries point=p nobs=nrecs;
output;

end;

end;

stop;
run;

proc reg data=rwin noprint outest=myests;
by w;
model y=x;

quit;

Brute Force, Holding and Writing

DATA rwin / view=rwin;
array _X {90} temporary_; /*What is TEMPORARY array?*/
array _Y {90} temporary_;

set myseries;

i=mod(_N_,90)+1; /*Determine which array element*/
_X{i}=x; /*Park values in the array */
_Yi}=y;

if _N_>=90 then do i= 1 to 90; /*Only do complete windows*/
x=_X{i}; y=_Y{i};
output;
end;
run;

proc reg data=rwin noprint outest=myests;
by date;
model x=y; quit;

Rolling Series, by ID

DATA rwin / view=rwin;
array X {90} temporary_;
array _Y {90} temporary_;
set myseries;
by id;
retain N O;

N = ifn(first.id,1,N+1); /*Within-ID counter*/

i=mod(N-1,90)+1; /*Determine which array element*/
/*NOTE: Order doesn’t matter */

_X{i}=x;

_Yi}=y;

Rolling Series, by ID

if N>=90 then do i=1t0 90; /*Complete windows only*/
x=_X{i};
y=_Y{i};
output;
end;
run;

proc reg data=rwin noprint outest=myests;
by id date;
model y=x;

quit;

Pass on Rolling SSCP
Not Rolling Data

SSCP = “Sum of Squares and Cross Products”

— Effectively equivalent to a correlation matrix, but is
not standardized nor “de-meaned”.

Can be generated by PROC CORR, PROC REG and
other procedures

Can be INPUT by PROC REG

SSCP size is NOT proportional to window size
(it is proportional to number of variables-squared

The TYPE=SSCP Data Set

e SAS also has type=CORR, COV, EST, FACTOR
* Type is reportable by PROC CONTENTS

| D | DA TR MNAME ersst] X | Y

(0EE 19860515 SSCP Intercept 90.000 0.0916 0.5343
i0EE 19860515 SSCP X 0.0916 0.0048 0.0030

kS 19860515 SSCP Y 0.5343 0.0030 0.1754

11FE 19860515 N 90 90 90

Rolling SSCP via PROC EXPAND

DATA vtemp / view=vtemp;
set myseries;

XX=X*X; [*Prepare un-summed squares ... */
Yy=y*y;
Xy=x*y /* ... and crossproducts for proc expand */
n=1;

run;

proc expand data=vtemp method=none
out=sscpdata (where=(_n=90));
by id;
id date;

convert Xy xy xxyy n / transformout=(MOVSUM 90);
run;

Convert Normal SSCPDATA data set
into a “type=SSCP” data set

data rsscp (type=SSCP keep = id date _TYPE_ _NAME_ intercept x y)
/ view=rsscp;
retain id date _TYPE_ _NAME_ intercept x y;
set sscpdata;
length _TYPE_S$8 NAME_S32;
_sumy=y; _sumx=x; ** Store for later use **;

TYPE="SSCP"; /* For the record type, not the data set type*/

** First record is just N, and sums already in each original variable **;
NAME='Intercept’;

Intercept=_n;

y=_sumy; X=_sumx;

output;

Convert Normal SSCPDATA data set
into a “type=SSCP” data set

name="X";
intercept=_sumx; X=xx; y=Xy;
output;
name="Y";
intercept=_sumy; x=xy; VY=VYy;
output;
TYPE='N’;
NAME='";
Intercept=_n; Y=_N; X=_N;
output;
run;
proc reg data=rsscp noprint outest=myests;
by id date;
model y=Xx;
quit;

SSCP Window vs Data Window

* Space Considerations

— Data set file windows require a lot of disk space
(proportional to window sizes)

— Data set view eliminates this (it’s just-in-time data,
never stored on disk)

— But SSCP data is proportional to number of variables
* Timing
— One test found the SSCP approach more efficient

than data window at window size of 100 (for 2
variables)

Questions?

Mark Keintz
mkeintz@wharton.upenn.edu

